
Research Institute for Advanced Computer Science
NASA Ames Research Center

Evaluating The Operations Capability

Of Freedom's Data Management System

llcnry A. Smvizral

-82.----

October 1990

Research Institute for Advanced Compttter Science
NAS'A Ames Research Center

Moffett FieM, CA

RIACS Technical P, cpor! 90.48

(NASA-CR-187315) EVALUATING THE OPERATIONS

CAPASILITY OF FREEDOM'S DATA MANAGEMENT

SYSTEM (ReseaFch Inst. for Advanced

Computer Science) 16 p CSCL 05B
G3/BZ

N92-14894

unclas
0043080

Evaluating The Operations Capability

Of Freedom's Data Management System

Henry A. Sowizral

October 1990

Research Institute for Advanced Computer Science
NASA Ames Research Center

Moffett Field, CA

RIACS Technical Report 90.48

Evaluating The Operations Capability

Of Freedom's Data Management System

Henry A. Sowizral

October 1990

Research Institute for Advanced Computer Science
NASA Ames Research Center

Moffett Field, CA

RIACS Technical Report 90.48

The Research Institute of Advanced Computer Science is operated by Universities Space Rese,'u'ch

Association, The American City Building, Suite 311, Columbia, MD 2104, (301)730-2656.

The work reported on herein was supported by Cooperative Agreement Number NCC2-387

between the National Aeronautics and Space Administration and the Universities Space Re-
search Association.

Evaluating the Operations Capability

of Freedom's Data Management System

Henry A. Sowizral

Research Institute for Advanced Computer Science
NASA Ames Research Center

Moffett Field, CA

RIACS Technical Report 90.48

ABSTRACT

As NASA and its contractors develop more elements of Space Station Freedom's

Data Management System (DMS), we can begin testing whether the DMS, as a

whole, can perform its operational functions. This report examines three areas of

DMS performance, raw processor speed, the subjective speed of the Lynx OS X-

Window system, and the operational capacity of the Runtime Object Database

(RODB). (The RODB is the central component in DMS services.) The report

concludes that the proposed processor will operate at its specified rate of speed

and that the X-window system operates within users' subjective needs. Unfortu-

nately, it also concludes that the RODB cannot provide the required level of ser-

vice, even with a two-order of magnitude (100 fold) improvement in speed.

SUMMARY

This report evaluates three aspects of Space Station Freedom's (SSF) Data Man-

agement System (DMS), as currently envisioned, and it examines whether or not the

DMS will be able to perform its operations function.

We approached this study by obtaining access to existing DMS hardware and

software in prototype or pre-prototype form; examining the hardware and software

for conformity to the DMS plan; quantifying the hardware and software perfor-

mance; and, analyzing the results in terms of operational needs.

The report examined three areas of performance, the raw speed of the Intel

80386DX processor chip, the subjective speed of the X-window display system, and

the operational capacity (the speed) of the Runtime Object Data Base (RODB) sys-

tem-the central component of the DMS.

We found that the Inte180386DX processor ran a nominal 3-4 MIPS rate depend-

ing on the application. Though the 80386 did run at its nominal processing rate, ac-

cording to a recent trade study [2], that rate is inadequate. That study, using nominal

latencies and speeds for required operations, concluded that two of the SDPs (80386

processors) were 100% oversubscribed. It observed that a processor with an 8 MIPS

processing rate would still struggle to keep up with the processing demand.

We found that the Lynx OS X-window implementation would serve adequately

as a window servermit performed on a par with other X-window environments such

as Sun Microsystem's 3/50.

We found that the RODB performance and architecture were woefully inadequate

to meet the demands of current DMS requirements. Assuming an RODB that ran 100

times faster than it currently runs on the preliminary prototype DMS kit, we comput-

ed that each of the 10 SDPs in the DMS network would be overload anywhere from

343% to 1096% just mirroring RODB objects on the ground---ensuring that ground-

based systems had the same data as onboard systems.

MOTIVATION

The last decade has produced a plethora of computer hardware. Every few years

another, more powerful, processing element arrived on the market place. Software

designers and programmers, writing machine specific software, could not keep up

with the rapid rate of hardware evolution. Hardware no longer dominated the cost of

a computer system, software development became the major cost factor. In an effort

to decouple themselves from specific hardware platforms, software designers began

pursuing processor independent and display independent development methodolo-

gies. However, such methodologies incorporate inherent compromises that necessar-

ily sacrifice execution speedfor easein porting. Despite this possible drawback, such

methodologies have been adopted for use in developing SSF's DMS.

The functionality of Space Station Freedom's Data Management System (DMS)
has been well defined, but very little analysis has been done to determine if the DMS

can perform its tasks in the time allotted. Many hardware and software decisions
have been made without considering the overall performance requirements of the

DMS. Some choices might severely impact SSF operations, yet no systematic study

quantifying the impact of design decisions on DMS performance can be found.

THE BASELINE DMS

The Data Management System (DMS) is the SSF subsystem that integrates on-

board information into a cooperative whole. It provides integrated data processing
and communications for both the core and payload functions, access to operational

information by the crew through the Multi-Purpose Applications Consoles (MPAC),

and interfaces to virtually all other onboard subsystems including the Communica

tions & Tracking System (CTS) which links all the digital data to the ground.

Hardware Environment

The baseline hardware design for the Preliminary Manned Configuration (PMC)
consists of 17 Standard Data Processors (SDP's), 2 Mass Storage Units (MSU's), 4

Multi-Purpose Applications Consoles (MPAC's), 63 Multiplexor-Demultiplexors

(MDM's), and various associated communication links: the DMS Optical Network,

CORE RING CORE RING CORE RING CORE RING
CONCENTRATOR #2A CONCENTRATOR #14A CONCENTRATOR #6A CONCENTRATOR _6A

I '13,_10 DMStLINE - CURRENT ESTIMATE - PMC i

CORE RING • CORE RING _ CORE RING • _ RING •

CONCENTRATOR #TA CONCENTRATOR #gA _ CONCENTRATOR #15A CONCENTRATOR #1A

I

2

" "v.

., k

two types of local buses, and High Rate Links (for higher bandwidth payload telem-

etry).

Each of the hardware components is built into one of a small number of chassis

called Orbital. Replaceable units (oRO's). All ORUsplug into a Common backplane

consisting of standard power connections, thermal sink connections, back-plane bus-

es (Multibus II and MicroChannel), and appropriate communications networks. The

SDPs, MSUs, and MPACs each contain an Intel 80386DX processor chip as their

central processing element. The communication links conform to popular standards

appropriate to their rates: 1553B (1 Mbps), 802.4 (10 Mbps), FDDI (100 Mbps), and

passive fiber-optic cables and patch panel for HRL's.

The DMS hardware also includes the Emergency Monitor and Distribution Sys-

tem (EMADS) which is purposely independent of the DMS network, and the Time

Generation Unit and Time Distribution Bus. The hardware design is specified in

great detail in the Architecture Control Document (ACD) and the CEI Specification.

Software Environment

The development language chosen for SSF is ADA. The underlying real-time op?

crating system is Lynx OS, a real-time operating system based on Unix. Lastly, the

display environment is based on the X-window display system.

The DMS consists of eight Computer Software Configuration Items (CSCI):

• Network Operating System (NOS),
• OS/ADA Run Time Environment (OS/ADA RTE),

• Standard Services (STSV),

Data Storage and Retrieval _SAR),
• DMS User Support Environment (USE),
• System Management (SM),
• Master ObjectDatabase Manager (MODB), _
• Operations Management Application (OMA).

The requirements and prelkninary design of these CSCI can be found in IBM's

Critical Design Review (CDR) documents. In overview, the NOS provides applica-

tions with the functionality needed to perform network transparent operations and

POSIX compliant real-time operations; the OS/ADA RTE provides a paired down , ,

operating environment (though no decision has been made as of yet, it appears that ==

the NOS will run on SDPs Wfiiie -fiae OS/ADA R_Wiil run on the _Ms); th0_:_ _

sTSV p_.rovid¢ access to DMs_services, most _p0_anfly access to theRODB; the = _ i- _,_-

DSAR provides access to the MSUs; the USE controls an appliCation_'S_ccess to an _ -:"

3

MPAC's display; the SM controls the initialization, re-initialization, and recovery of

the DMS system at initial start up, warm, and cold boot; the MODB permits the cre-
ation and initialization of new objects in the RODB; and f'mally, the OMA has over-

sight functions over all SSF onboard operational activities.

Of the eight CSCIs, the Operations Management Application acts more globally
than the other seven CSCI. It, in fact, acts much like other DMS applications: it uses

the functionality provided by the other seven CSCIs to perform its intended tasks.

The DMS presently contains nine applications:

• Communications and Tracking (C&T),
• Crew Health Care Systems (CHeCS),
• Electric Power System (EPS, SEPS),
• Environmental Control and Life Support System (ECLSS),

• Fluid Management System (FMS),
• Guidance, Navigation, and Control (GN&C),
• Operations Management Application (OMA),
• Thermal Control System (TCS).

The nine applications perform various functions that ensure SSF's safe operation,.

They monitor and control all aspect of day-to-day and minute-to-minute SSF activ-'

ities. Their names provide a rough idea of their functional responsibilities. Of the

nine applications, only the OMA plays a duel role. It is part of the baseline DMS as

well as a distinct DMS applications. The OMA orchestrates the activities of the other

applications and, when necessary, arbitrates among the applications when conflicts

occur. Unfortunately, none of these applications is available for testing.

Because the OMA is of such importance, we will keep its functional needs firmly

in mind during our capability analysis.

The Operations Management Application

The OMA is the onboard portion of the Operations Management System (OMS).

The OMS, as a whole, is tasked with the coordinated operation of Station. It is divid-

ed into two portions the Operations Management Ground Application (OMGA) and

the Operations Management Application (OMA). The OMGA is located on the

ground and performs longer term planning and scheduling functions. The OMA is

located on Station and performs shorter term replanning activities and provides over-

sight functions. The OMGA and the OMA coordinate with one another via Short,

Term Plans (STP).

The Short Term Plan contains all the information necessary to perform station ac-

4

tivities over a time period lasting up to several days. Activities that the STPs can rep-

resent and control include: crew, system, element, and payload timelines; operation-

al constraints and environmental requirements; resource availability, requirements,

and allocation; system and payload input parameters; and, the automatic execution

of command sequences.

The OMA must interact with the OMGA, Station crew members, and Station el-

ements and systems. To perform these activities, the OMA uses most of the seven
DMS CSCIs. It uses the NOS to communicate with the OMGA, the OS/ADA RTE

to control real-time applications and inter-application communication, the STSV to
accesssensor values and control actuators stored in the RODB, and the USE to allow

interactive communication with crew members.

DMS DESIGN DECISIONS

NASA had decided on a number of hardware and software issues as they relate to

SSF. Some decisions were made on the basis of availability, other decisions seem to

have less substantial rationales.

Hardware

NASA chose to simplify its hardware design by standardizing on the Intel

80386DX chip. The 80386 processor is quite popular, widely available, and well on

its way to being space qualified. Intel also intends on continuing to produce a family

of processor chips upwardly compatible with the 80386. This evolutionary path may

be the only hope for the DMS since the 80386DX already appears to be underpow-

ered. According to a recent trade study [2], SDP 5 and 6 show the 80386 as being

more than 100% over utilized:

"In fact, the amount of processing power required by the applica-
tion EDP cannot be realized unless its processing rate.., is at least

8 MIPS, however, this still results in relatively large queue sizes

and a [still]-high utilization." (pp. 5-23).

In another vein, four years have passed since the selection of the 3-4 MIPS

80386DX. By assembly complete, the 80386 chipset will be t3 years old and the

80486 will be noting 10 years of age. Past experience has shown that chipsets older

than 5-7 years tend to be obsolete and thus less available in the marketplace.

It appears that the onboard DMS may suffer severely from a lack of computation-

al capability. Insufficient onboard computational capability could require that

ground-based computers or human operators assume the responsibility for minute-

to-minute operational decision making. Shifting operational control to the ground

may have a tremendously negative impact on operational costs.

Software

NASA chose two mechanism for simplifying the complexity of DMS software.

First it chose a restricted set of software development tools. Second, it adopted spe-

cific interaction protocols for use in the DMS's distributed environment.

Three software tools occupy a central place in NASA's movement toward ven-

dor-independent software development methodologies: ADA, Unix, and X-Win-

dows. ADA provides a hardware independent programming environment. ADA is
the DoD standard embedded system development language. It has a broad base of

support and thus an assured future. UNIX provides a hardware independent operat-

ing system. It is by far the favorite "new" operating system because of its flexibility,

its portability, and its wide acceptance. X windows, provides a vendor independent

windowing and graphics environment. X-windows has achieved broad industry ac-

ceptance and provides a display technology that decouples the application's display
commands from the ugly details of device specific display commands. .

All three tools decouple the programmer from hardware specifics by providing

the programmer with auniform environment containing well defined operations that
get translated into the appropriate hardware-specific operations. ADA provides a

programmer with a uniform processor. UNIX provides a uniform set of system ser-

vices, and X provides a uniform bit-mapped display device. The price for simplify-

ing the programmer's work is paid in potentially higher memory requirements and

slower computation speeds.

In the area of interactions protocols, the DMS Critical Design Review (CDR) [1]

lists 11 restriction that "must be followed if an application is to correctly operate in

a DMS environment." Three of the restrictions specify how applications may interact
with one another. The three restrictions are:

3) Displays are independent of applications. All data to be dis-
played is written to the Runtime Object Data Base (RODB).
Display generators can read the data from the RODB at their
discretion.

4) All data shared by programs is shared through the RODB.

7) All program-to-program communication is provided through
RODB actions and attributes. This is true for both intra- and

6

inter-node communications.

These three rules make the RODB the repository for all non-local SSF informa-

tion. By using the RODB in this manner, the DMS can decouple applications, one
from the other. An application need not know which application or applications are

responsible for generating its inputs, nor need it know which application or applica-

tions use the output it generates. All an application needs to know is the name of the

object or objects in the RODB that contain its input and the name of the object or

objects that will contain its output.

This decoupling between applications allows system designers and system users

to view an application as a plug compatible software "card" that can be extracted or
inserted into the "RODB data bus." Decoupling applications in this manner simpli-

fies application design considerably and as such is conceptually quite useful. How-
ever, it creates a tremendous bottleneck: the RODB becomes a central data structure

in almost all computations: all access of sensor data, all actuator changes, all inter-

application interaction, all displays of information, and all operational changes. All

information flows through the RODB. If the RODB cannot handle this traffic, if its
bandwidth is too low, the DMS cannot function. "Centralizing" information, even in?

the partially distributed style of the DMS's RODB, seriously bends a cardinal rule of

distributed systems: use no central data structures.

The choice of hardware, software tools, and interaction protocols may seem rea-

sonable considering the projected 30-year life-span of Space Station Freedom. After

all, it might makes sense to sacrifice a little efficiency in the short term for a greater

degree of flexibility over the life of the project. However, by making these individual

decisions independently of one another, we may have sacrificed the viability of

Space Station Freedom.

THE STUDY

Duplicating the computational environment onboard Space Station Freedom is

not currently feasible. Neither the exact hardware nor software is available; however,

a good approximation to SSF's computational environment can be assembled. We

did just this in two separate tes_,

We examined three aspects of DMS performance. On the first testbed, we studied

the raw processing power of the Inte180386 processor and the ability of Lynx OS to
create X- _windows. On the second testbed, we studied the RODB's ability to retrieve _

• |4

objects. _ _

l_ _:. _.

7

We did not include an ADA compiler in our study for two reasons. First, the Lynx

OS at present does not support virtual memorymwithout paging, none of the avail-

able ADA compilers can execute in 4 megabytes of memory. And second, Space Sta-
tion Freedom hasnot settled on a specific ADA compiler: at present DDCI and Alsys

compiler are both under consideration.

The First Testbed Architecture

Our first two studies were performed on a subset of the Ames Research Center

(ARC) testbed. The testbed was configured to match the computational environment

of Space Station Freedom as closely as possible.

The hardware involved in our testing consisted of an IBM PS/2 Model 70-A21

computer configures with 4 Megabytes of memory. The processor also contained a

high density (1.44MB) diskette, a math co-processor, a 3Com Etherlink ethernet
card, a 16" Color monitor, and a mouse, though we did not use either the diskette or

the math co-processor in our evaluation. We also had available an IBM PS/2 486/25
Power Platform that allowed us to use the computer as if it contained an 80486 pro-

cessor chip.
v..

The software configuration consisted of the Lynx OS/386-PS real-time operating

system, version 1.0. It included X-window support (the X386PS-F product) and

TCP/IP support (the TCP/386PS product.) The testbed also includes the GNU-based

development products including the gnu-C compiler, gnu-C debugger, and gnu-

Emacs editor

Raw Speed. We tested the PS/2 on a number of program using the built in per-

formance features that Lynx OS provides. We confirmed that the processor per-

formed at its nominal 3-4 MIPS rate.

X-Windows. Two possible ways of testing the X-windows facility present them-

selves. The first was a program that opens and closes a window inside a loop. Such

an approach seems art inappropriate measure of X-window speed since it ignores

program loading time. The quantitative amount of time necessary to open a window

is of less impo_ce than the sub_t!ve time necessary to oPen a window.

The second approach requires a program that opens a window, prints out ten

phrases in different areas of the window, and then pauses. When the user clicks the

mouse in that window, the program deletes the window and exits. This program let

us simulate the time it takes to load a program and then open a window. Using a stop

watch to perform timings our program was able to load and establish a window in

under one second----comparable in speed to the Sun 3/50.

We found that an 80386DX processor running Lynx OS and the Lynx X-window

system served as an adequate window server when a single application was request-

ing window services.

The Second Testbed Architecture

JSC has constructed a DMS testbed. That testbed presently consists of IBM's pre-

liminary prototype DMS kit. The kit contains of an SDP, an MPAC, and an third

IBM processor that simulates the functions of an MDM and its attached sensors and
actuators. The MPAC is connected to the SDP via a fiber interconnect. The SDP is

connected to the IBM processor that simulates the MDM via a 1553 data bus.

The testbed does not contain the full suite of DMS software. Of the software that

is available, not all of it conforms to the current baseline specifications. As an exam-

ple, the preliminary prototype DMS kit uses IBM's AIX operating system version
1.1 as its underlying operating system rather than the baseline specified Lynx OS.
The testbed software does include some DMS services, most importantly, it includes

code to access the RODB. The testbed also includes a simulated DMS application.

(ECLSS) and as mentioned earlier an MDM simulator that include an emulation of -_
sensors and actuators.

In the testbed the ECLSS simulation resides on the MPAC, the RODB resides on

the SDP, and the simulated MDM resides on yet a third IBM processor.

Experience With The Preliminary Prototype DMS Kit

JSC contractors wrote a very simple test program to time RODB access.The pro-

gram repetitively reads an 80-byte object 10 times and averages those ten reads over

100 executions. The program performs 1000 reads in total. The test program resided

and executed on the SDP, the same processor that contained the RODB.

Four test runs were performed. In two of the tests the data object was available in

RODB's local memory. In the other two tests tim data object was not available in lo-

cal memory and the RODB needed to retrieve the object from the MDM simulator

via the 1553B data bus. The other factor that varied in these tests was the ECLSS ap-

plication. In half the tests the MPAC was executing ECLSS. In the other half, ECLSS

was not running. The following table summarizes the RODB access times in the four

configurations. The values represent the average time it took to perform 10 RODB

reads.:_

9

data available locally

data retrieved from MDM

ECLSS not running

4.29 sec

13.59 sec

ECLSS running

8.39 sec

29.49 sec

The table is not a misprint. In the best case, with the information available locally

and no application load, 10 RODB reads took 4.29 seconds or on average 4 1/3 sec-

onds to access a single data object.

These number are significantly slower than what would be required if application

actually used the DMS in the manner specified in the DMS CDR. Admittedly, the

number are taken from a preliminary prototype DMS kit and thus the raw speeds are

quite suspect; however, the numbers do point out a potential problem area.

Assuming that the RODB programmers work very hard in optimizing their code,

they may be able to improve throughput by 2 orders of magnitude or 100-fold. In

such a scenario, our best case access time would drop to 4 milliseconds. The remote

RODB access times would require 14 milliseconds. Translated to bandwidths, the

RODB could handle somewhere between 73 and 233 read requests per second. -

If the RODB were to serve as central a function as that described in the DMS

CDR, a 100-fold increase speed increase would be insufficient.

An Simple Scenario--Displaying Astronaut Information

A simple scenario illustrates the need for more speed in the RODB. The OMS

must access the RODB when an astronaut requests information. The astronaut might

float over to an MPAC and select a particular display. The associated display pro-

gram would then retrieve the necessary information from the RODB, format it ap-

propriately, and then issue the X-window comm_ds needed to display the data on

the MPAC.

We can envision two ways of performing this operation. If we assume that the dis-

play requires 40 values, we compute two different elapsed retrieval times.

Using the first technique, the application program accesses each object individu-

ally by sending a request to the RODB via the FDDI network. An RODB request

message would have a network latency of 50ms, the access would require 4 ms, and

the return message would require an additional 50 ms, a total of 104ms. Forty such

requestcycies would require more than 4 seconds. Another second is required to for-

mat, create, and display the information. Overall this technique would require over

10

5 seconds--an unacceptable amount of time.

Using the second technique, the application program optimizes RODB accessby

predefining an RODB display object that has indirect pointers to the remaining 40

parameters.This technique requires lOOms for the round trip message latency and
164ms to retrieve the display object and its associated 40 objectsma total of 264
milli-seconds to accessand retrieve the necessary information. Another second is re-

quired to format, create, and display the information. This technique would require
1.3 seconds. Written in this manner, a request to display astronaut information could

be performed in a reasonable amount of timemassuming no other operations were

accessing the RODB at the same time.

These computed numbers are minimal elapsed times. Other factors such as pro-

cess scheduling delays and RODB loading caused by other applications would im-

pact elapsed times significantly. In fact, just running one other application (ECLSS)
would double the time needed to retrieve the display parameters. A DMS loaded

down with 9 applications could easily extend our computed times into the multi-sec-

ond range--unacceptable from a human factors perspective. .

A Second Scenario -

The previous scenario is a simplistic one. It does not take into account much of

the complexity found in the architecture of the DMS applications, though it does be-

gin to show some of the problems SSF will face given a poorly performing RODB

implementation.

In this scenario we examine the impact of another DMS design decisions: the mir-

roring of all RODB objects on the ground. We once again assume that a team of pro-

grammers can achieve a two order of magnitude improvement in RODB speed, that
is that SSF's RODB will execute 100 times faster than the preliminary prototype

DMS kit's RODB.

The latest scrub activities resulted in a trade study [3] that envisions SSF with

only 8,000 sensor and 2,000 effectors, down from a previous 40,000 sensor/effec-

tors. The study details a DMS with 500 scan lists each containing 16 sensors. If we
assume an uniform distribution of sensor/effectors across MDMs and SDPs, and we

assume a DMS that contains 10usable SDPs each with an RODB, we would end up

having 800 sensor values residing in 80 composite objects in each and every RODB.
Given SSF's nominal sensor polling rate of 100 millisecond, each RODB would up-

date its sensor values 8,000 times per second. This would give us a sensor object up-

11

-_cLPSI c,_!-_ I-

SUMMARY

Thi:)ortevaluates three aspects of Space Station Freedom's (SSF) Data Man-

(DMS), as currently envisioned, and whether or not the

to perform its operations function

agement S

DMS will be a

We apprc

software in

for conformity to the

mance; and, analyzing

The report examined areas of

80386DX processor chip, the

the operational capacity (the

tem--the central component of

We found that the Intel

ing on the application. Though the

cording to a recent trade study [2

latencies and speeds for require

processors) were 100% :ribed. It

processing rate would still sl tggle to keep

study by obtaining

pre-prototype form; ex

plan;
;ults in terms of

OS X-window "

_'ormed on a par with

We found that the

as a window server--it

as Sun Microsystem's

We found that the performance i

to existing DMS hardware and

the hardware and software

:he hardware and software perfor-

_nal needs.

)rmance, the raw speed of the Intel

of the X-window display system, and

Runtime Object Data Base (RODB) sys-

ran a nominal 3-4 MIPS rate depend-

16 did run at its nominal processing rate, ac-

is inadequate. That study, using nominal

,, concluded that two of the SDPs (80386-

,served that a processor with an 8 MIPS

with the processing demand.

;mentation would serve adequately

ther X-window environments such

to meet the)f current DMS requirements.

times faster than runs on the preliminary r

ed that each of 10 SDPs in the DMS network woul

343% to 1096 _ just mirroring RODB objects on the

based s had the same data as onboard systems.

MI iN

The decade has produced a plethora of

more powerful, processing element arrived on the

desi ,,rs and programmers, writing machine specific

.cture were woefully inadequate

;suming an RODB that ran 100

DMS kit, we comput-

be overload anywhere from

g that ground-

Every few years

place. Software

could not keep up

_ rapid rate of hardware evolution. Hardware no longe dominated the cost of

_ a"Comivu_r sy_em, software development became the major cost factor. In an effort

date rate of 800 times per second. To mirror all these values on the ground, one of

the DMS applications would need to accesseach RODB 800 times per second. As a

result each RODB would experience an overload of between 343% and 1096%. This

overload would happen before any other DMS application accessed the RODB.

REFERENCES

[1] McDonnell Douglas Space Systems Company, Space Station Division, Soft-

ware User's Guide (Data Management System) (DR SY-40.1), MDC H4542 Resub-

mittal 2, September 1990.

[2] System Engineering and Integration Trade Study: DMS End-to-End Simula-

tion Analysis Report, MDC H4875, April 1990.

[3] System Engineering and Integration Trade Study: Runtime Object Database

(RODB) Sizing White Paper, DR SY-01.3I, July 31, 1990.

Q

w- ..

b

12

